
J. Fluid Mech. (2009), vol. 618, pp. 113–134. c© 2008 Cambridge University Press

doi:10.1017/S0022112008004539 Printed in the United Kingdom

113

Low-dimensional models of a temporally
evolving free shear layer

MINGJUN WEI1† AND CLARENCE W. ROWLEY2

1Department of Mechanical and Aerospace Engineering, New Mexico State University,
Las Cruces, NM 88003, USA

2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

(Received 11 February 2008 and in revised form 24 September 2008)

We develop low-dimensional models for the evolution of a free shear layer in a
periodic domain. The goal is to obtain models simple enough to be analysed using
standard tools from dynamical systems theory, yet including enough of the physics to
model nonlinear saturation and energy transfer between modes (e.g. pairing). In the
present paper, two-dimensional direct numerical simulations of a spatially periodic,
temporally developing shear layer are performed. Low-dimensional models for the
dynamics are obtained using a modified version of proper orthogonal decomposition
(POD)/Galerkin projection, in which the basis functions can scale in space as the
shear layer spreads. Equations are obtained for the rate of change of the shear-layer
thickness. A model with two complex modes can describe certain single-wavenumber
features of the system, such as vortex roll-up, nonlinear saturation, and viscous
damping. A model with four complex modes can describe interactions between two
wavenumbers (vortex pairing) as well. At least two POD modes are required for
each wavenumber in space to sufficiently describe the dynamics, though, for each
wavenumber, more than 90 % energy is captured by the first POD mode in the scaled
space. The comparison of POD modes to stability eigenfunction modes seems to
give a plausible explanation. We have also observed a relation between the phase
difference of the first and second POD modes of the same wavenumber and the
sudden turning point for shear-layer dynamics in both direct numerical simulations
and model computations.

1. Introduction
Temporally and spatially evolving shear layers have been studied for over a century

(Saffman & Baker 1979; Ho & Huerre 1984; Chomaz 2005), dating back to the
early discoveries of Helmholtz and Lord Kelvin, and the more detailed analysis of
Lord Rayleigh (Rayleigh 1880), which laid the foundations for the stability analysis
we still use today (Schmid & Henningson 2001; Drazin & Reid 2004). Recently,
experiments have suggested that high-frequency forcing of shear layers over open
cavities may provide a mechanism for suppression of tones in cavities (Stanek et al.
2001), and a long-term goal of this work is to study the dynamics of forced shear
layers, to understand these effects better and analyse them using techniques for
general dynamical systems (Guckenheimer & Holmes 1983; Thomsen 2002). This
paper focuses on nonlinear models for the evolution in time of a spatially periodic
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shear layer, including nonlinear effects such as saturation of disturbances and energy
transfer between modes.

The development of these models is motivated by the desire to understand shear
flows better, and ultimately to control them. For instance, the free shear layer plays
an important role in amplifying disturbances in the flow past a cavity (Tam &
Block 1978). A better understanding of these dynamics, and, in particular, nonlinear
interactions between frequencies, is essential in order to understand these flows reliably
enough to control them (Rowley & Williams 2006).

The technique we use is based on proper orthogonal decomposition (POD) and
Galerkin projection, but differs from the standard technique, in that we use basis
functions that are able to change their spatial scale as the shear-layer thickness
changes. A related technique has been used for travelling solutions in Rowley &
Marsden (2000), and self-similar solutions in Rowley et al. (2003). In this method,
empirical basis functions are computed from numerical data that is first scaled so
that it matches best with a preselected ‘template’. Forming the reduced-order models
in the scaled reference frame is often a considerable advantage, as typically models of
much lower dimension are possible once global features such as self-similar spreading
have been factored out. Note that POD/Galerkin models of a spatially developing
shear layer have been studied by Noack et al. (2004), without scaling the modes.

The general philosophy is similar to that used in previous techniques using shift
modes (Noack et al. 2003): we wish to capture the effects of perturbations on the
mean flow. However, the specifics of our method are quite different. While shift modes
capture the effect on the mean by introducing additional basis functions, we capture
these effects by dynamically scaling the coordinates, both of the base flow, and of the
basis functions themselves.

Scaling of basis functions is not a new idea: for instance, Noack & Eckelmann
(1994) scaled basis functions in the radial direction to model the flow past a cylinder,
also using the Galerkin method. However, in this previous work, this scaling was
fixed in time, depending on the boundary-layer thickness and Reynolds number. In
our work, the basis functions scale dynamically, and a key contribution is equation
(3.38), sometimes called a reconstruction equation, for how the scaling parameter g

changes in time.
In this paper, we consider the complete evolution history of a two-dimensional

periodic shear flow, starting with a one-dimensional self-similar solution for shear
layer, then instability-induced vortex roll-up, and pairing and, finally, nonlinear
saturation and viscous diffusion. This evolution is shown in figure 1. The shear-layer
thickness grows throughout the process, and this continuously changing length scale
makes it difficult for conventional POD modes to capture the dynamics efficiently.

The main contribution of this paper is a method for scaling the variables so that
the dynamics in the scaled frame are as simple as possible. For instance, in this
scaled frame, the exact solution for self-similar spreading of a shear layer is simply
an equilibrium point. However, the method is not as simple as assuming that the
shear layer’s spreading rate is the same as that of the self-similar solution: indeed,
this would not be appropriate, as the presence of perturbations typically modifies this
spreading rate. Instead, we develop an equation for this spreading rate, directly from
the Navier–Stokes equations.

The governing equations and other simulation details are given in § 2. Then, we
present the scaling technique and low-dimensional modelling in § 3. Finally, in § 4,
we compare the model computations with the analytical solution and numerical
simulations, and discuss the results.
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Figure 1. Demonstration of typical evolution of periodic shear layers, showing initial growth
of the instability, pairing, saturation and viscous diffusion; vorticity contours are shown, but
different contour levels are set for better visualization.

2. Governing equations and numerical simulations
The flow considered here is described by non-dimensional Navier–Stokes equations

in the form

∂u

∂x
+

∂v

∂y
= 0, (2.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, (2.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
, (2.1c)

where the characteristic length is the initial vorticity thickness δω0 at t = 0, and the
characteristic velocity is �U = U2 − U1 with U1 and U2 being the velocities at −∞
and +∞. We define vorticity thickness for shear layers as δω =(U2 − U1)/|du/dy|max

(Brown & Roshko 1974). Accordingly, the pressure is scaled by ρ�U 2 and Reynolds
number is defined by Re = ρ�Uδω0/μ. For the rest of the paper, all variables are
normalized by the same characteristic values unless otherwise specified. Though
incompressible flow is assumed here and later in low-dimensional modelling, the
simulations solve the fully compressible Navier–Stokes equations at low Mach number
(Mc = (U2+U1)/2a∞ = 0.2), using a code that has been extensively validated before for
a spatially developing shear layer by Wei & Freund (2006). The velocity divergence
induced by weak compressibility has been checked to be negligible, and thus treating
the current simulation data as ‘incompressible’ is justified. This approximation is also
assured by the comparison between the results from numerical simulation, analytical
solution (one-dimensional viscous diffusion case only), and the model presented later
in this paper.

As shown in figure 2, a two-dimensional free shear flow, periodic along the
streamwise (x) direction with Reynolds number Re = 200, is simulated in a rectangular
region of 0 < x < 5π and −50 <y < 50 with 128 × 800 mesh points along the x- and
y-directions. The domain length was chosen to be about twice the wavelength of the
most unstable mode for the initial shear-layer profile, and the mesh was stretched in y

to increase the resolution in the shear layer. The computational domain includes
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Figure 2. Schematic of the two-dimensional free-shear-layer simulation.

an absorbing buffer zone (Freund 1997) at the top and bottom (30 < |y| < 50),
which mimics the radiation boundary conditions, along with a one-dimensional
characteristic boundary condition at the outside boundaries. A periodic boundary
condition is applied naturally along the x-direction. A spectral method was used for
the x-direction derivatives, the fourth-order dispersion-relation-preserving scheme of
Tam & Webb (1993) was used for derivatives along the y-direction, with a fourth-order
Runge–Kutta algorithm for time advancement.

2.1. Exact solution

Using classical similarity solution techniques (Schlichting & Gersten 2000), we can
show there exists an unstable self-similar solution

us(η) = U1 +
U2 − U1

2
erfc(−η), vs(η) = 0, (2.2)

where the similarity variable η is given by

η = y

(
Re

4(t − t0)

)1/2

. (2.3)

Here, we use this exact solution for three purposes: as a base flow, about which
to expand the solution in terms of modes, as in (3.8); as a template function, to be
defined in the next section, as used in (3.5); and in order to validate our numerical
simulations and low-order model formulation. We typically take the singularity time t0
to be −Re/4, so that η = y at t = 0. In all simulations, we choose U1 = 0 and U2 = 1.
Then the initial velocity field for the simulation is simply

u0(y) = 1
2
erfc(−y), v0 = 0. (2.4)

Although we use this self-similar solution as a base flow, note that the derivation
of all model equations below, including the evolution of the scaling variable, has no
underlying assumption of self-similarity. This preserves the generality of the current
modelling effort, and allows us to study solutions that are not precisely self-similar,
but rather are perturbations of self-similar solutions.



Low-dimensional models of a temporally evolving free shear layer 117

3. Low-dimensional models
3.1. Scaling and mode decomposition

A common approach to low-dimensional modelling is to project the governing
equations onto a fixed set of basis functions, which are often determined by POD of
a set of data. Here, since the shear-layer thickness is spreading in time, we consider
basis functions that scale in the y-direction. In particular, denoting the vector of flow
velocity by q = (u, v), we introduce a scaled variable q̃, which satisfies

q(x, y, t) = G(g)q̃(x, g(t)y, t), (3.1)

where g(t) > 0 is a scaling factor, and a coefficient matrix

G(g) =

[
1 0
0 1/g

]
(3.2)

is introduced so that, for any g(t) > 0,

divq = 0 ⇐⇒ divq̃ = 0. (3.3)

The pressure is scaled similarly by

p(x, y, t) = p̃(x, g(t)y, t).

Later, it is shown that once boundary conditions are imposed, the pressure terms
disappear as long as a particular definition of the inner product is used. This avoids
the need to model the pressure term explicitly as in Noack et al. (2005). Therefore,
we focus our discussion below on the flow velocity vector q̃.

Writing q̃ in terms of its components (ũ, ṽ), the scaling relation becomes

u(x, y, t) = ũ(x, g(t)y, t), (3.4a)

v(x, y, t) =
1

g
ṽ(x, g(t)y, t). (3.4b)

The choice of the scaling factor g(t) is arbitrary, but following the approach in Rowley
et al. (2003), here we choose it so that the scaled solution q̃(x, y, t) lines up best with
a pre-selected template function. The exact solution is a natural choice for a template
function, so we take the template function to be q0 = (u0, v0) as well. Since only the
u-component of the template velocity is non-zero, the scaling factor g(t) in this paper
is defined as

g(t) = arg min
g

∥∥∥∥u

(
x,

y

g
, t

)
− u0(y)

∥∥∥∥
2

, (3.5)

where the L2 norm is defined by an integration over the spatial domain Ω (over all y

and one period along x):

‖ · ‖2 =

∫
Ω

(·)2 dx dy. (3.6)

A new thickness δg can be defined by g(t) as

δg = 1/g(t). (3.7)

It is not surprising that the thickness δg is very close to δω in our flow, and therefore,
all qualitative statements we make about δg and δω are interchangeable.



118 M. Wei and C. W. Rowley

We can expand the scaled velocity q̃ in terms of basis functions Φj , using the exact
solution as a base flow, as

q̃(x, y, t) = q0(y) +

∞∑
j=1

aj (t)Φj (x, y), (3.8)

where Φj are basis functions and aj are corresponding time coefficients. We note that
in practice, q0 is very close (almost identical) to the mean (in x and t) of the scaled
data from the simulations.

Because of the translation invariance in the x-direction, Fourier modes are an
appropriate choice along the x-direction for our problem. Along the y-direction, we
first scale all data snapshots as in (3.1) so that each snapshot most closely matches
the template u0(y), as described in (3.5). We then compute the POD modes of each
wavenumber from the scaled data set. The expansion (3.8) becomes

q̃(x, y, t) = q̃0(y) +

+∞∑
k=−∞

∞∑
n=0

ak,n(t)Φk,n(x, y), (3.9)

with basis functions

Φk,n(x, y) = e2πikx/Lφk,n(y). (3.10)

Here, k is the wavenumber with L being the total domain length in the x-direction,
and φk,n = (ûk,n, v̂k,n) is the nth POD mode for wavenumber k. The vector inner
product used in the POD calculation is simply

〈ã, b̃〉 =

∫
Ω

(ã1b̃1 + ã2b̃2) dx dy, (3.11)

where ·̃ indicates that the quantity is in the scaled space, and the x integration
is actually absorbed during the computation after each individual Fourier mode is
substituted in. The energy of each POD mode (k, n) is quantified by

λk,n = |〈q̃ − q̃0, Φk,n〉|2 = |ak,n|2, (3.12)

where ·̄ denotes a time average. We emphasize that the inner product used here to
compute POD modes is different from the one used later in Galerkin projection,
defined in (3.27). As a result, the orthogonality of POD modes cannot be assumed
when the flow equations are projected to these bases.

3.2. Projection of flow equations

From a more general point of view, we regard the equations of motion as a dynamical
system evolving on a function space H , consisting of the flow variables at all points
(x, y) in our spatial domain. Thus, q(t) ∈ H is a snapshot of the entire flow at time
t , and the governing equations of motion may be written

∂q(t)

∂t
= f (q(t)), (3.13)

where f is a differential operator on H (e.g. the Euler or Navier–Stokes equations).
If we introduce the scaling operator Sg : H → H , defined by

Sg[q](x, y) = G(g)q(x, gy), ∀g ∈ �+, (3.14)
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then the scaling (3.1) becomes q(t) = Sg[q̃(t)], and the governing equations may be
written

∂

∂t
Sg(t)[q̃(t)] = f (Sg[q̃(t)]). (3.15)

Since

∂

∂t
Sg(t)[q̃(t)](x, y) =

∂

∂t
G(g)q̃(x, g(t)y, t)

=

(
∂

∂t
G(g)

)
q̃(x, g(t)y, t) + G(g)

∂

∂t
q̃(x, g(t)y, t)

= Ġ(g, ġ)q̃(x, g(t)y, t) + G(g)
∂ q̃
∂t

(x, gy, t) + G(g)ġy
∂ q̃
∂y

(x, gy, t)

= Ġ(g, ġ)q̃(x, g(t)y, t) + Sg

[
∂ q̃
∂t

]
(x, y) +

ġ

g
Sg

[
y

∂ q̃
∂y

]
(x, y), (3.16)

where

Ġ(g, ġ) =

[
0 0
0 −ġ/g2

]
, (3.17)

the equations of motion become

Sg

[
∂ q̃
∂t

]
= f (Sg[q̃]) − ġ

g
Sg

[
y

∂ q̃
∂y

]
− Ġ(g, ġ)q̃(x, gy, t). (3.18)

If we define fg(q̃) = S1/gf (Sg[q̃]), then these may be written

∂ q̃
∂t

= fg(q̃) − ġ

g
y

∂ q̃
∂y

− G(1/g)Ġ(g, ġ)q̃(x, y, t). (3.19)

Thus, the equations for the evolution of the scaled variable q̃ are similar to the original
dynamics (3.13), with f replaced by fg , and with two additional terms related to the
rate of change of the scaling factor g(t).

Applying the results to our flow equations in (2.1a), the function f (q) for the
Navier–Stokes equations is

f (q) = C(q, q) + P +
1

Re
V (q), (3.20)

where

C(q1, q2) =

⎛
⎜⎜⎝

−u1

∂u2

∂x
− v1

∂u2

∂y

−u1

∂v2

∂x
− v1

∂v2

∂y

⎞
⎟⎟⎠,

P =

⎛
⎜⎜⎝

−∂p

∂x

−∂p

∂y

⎞
⎟⎟⎠, V =

⎛
⎜⎜⎝

∂2u

∂x2
+

∂2u

∂y2

∂2v

∂x2
+

∂2v

∂y2

⎞
⎟⎟⎠. (3.21)

Following the derivation above, it is straightforward to obtain fg(q̃) as

fg(q̃) = Cg(q̃, q̃) + Pg +
1

Re
V g(q̃), (3.22)
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where

Cg(q̃, q̃) =

⎛
⎜⎜⎝

−ũ
∂ũ

∂x
− ṽ

∂ũ

∂y

−ũ
∂ṽ

∂x
− ṽ

∂ṽ

∂y

⎞
⎟⎟⎠, Pg =

⎛
⎜⎜⎝

−∂p̃

∂x

−g2 ∂p̃

∂y

⎞
⎟⎟⎠, V g(q̃) =

⎛
⎜⎜⎝

∂2ũ

∂x2
+ g2 ∂2ũ

∂y2

∂2ṽ

∂x2
+ g2 ∂2ṽ

∂y2

⎞
⎟⎟⎠.

(3.23)

At the same time, with the scaling (u, v) → (ũ, ṽ) defined in (3.1), the scaled velocity
field remains divergence free:

∂ũ

∂x
+

∂ṽ

∂y
= 0. (3.24)

Since the basis functions are linear combinations of flow snapshots, each basis function
for the scaled space is also divergence free:

divΦk,n = 0, (3.25)

which indicates that the continuity equation is automatically satisfied in the scaled
space by the decomposition (3.9). The continuity equation is also used to remove
pressure terms as shown later.

Initially, to simplify the discussion, we retain only wavenumbers k = ±1, and the
first two POD modes n= 1 and n= 2 for each wavenumber in the expansion of q̃
in (3.9). The summation is then an approximation of the original q̃. We will abuse
notation and retain the notation q̃ for the finite sum in (3.9). Since q̃ must be real,
we have the additional constraint that

a1,1Φ1,1 + a1,2Φ1,2 = a∗
−1,1Φ

∗
−1,1 + a∗

−1,2Φ
∗
−1,2, (3.26)

which permits further simplification of the equations that follow.
To obtain the equations for time coefficients a1,1(t) and a1,2(t), we project the

governing equation (3.19) onto modes Φ1,1 and Φ1,2. The inner product for the
projection in the scaled space is g-dependent and defined by

〈ã, b̃〉g =

∫
Ω

(
1

g
a1b1 +

1

g3
a2b2

)
dx dy, (3.27)

for which the following identity holds:

〈q1, q2〉 = 〈q̃1, q̃2〉g . (3.28)

Note that this definition of the inner product causes the pressure terms to vanish: we
have

〈Pg, Φk,n〉
g

= 0, (3.29)

since Φk,n is divergence-free and either vanishes or is periodic at the boundaries,
in a way similar to the discussion by Holmes, Lumley & Berkooz (1996). For
other problems with more general boundary conditions, modelling the pressure terms
explicitly may be necessary, as described by Noack et al. (2005).

Therefore, the projected flow equations on basis function Φk,n are〈
∂ q̃
∂t

, Φk,n

〉
g

= 〈Cg(q̃, q̃), Φk,n〉
g
+

1

Re
〈V g(q̃), Φk,n〉

g

+

〈
− ġ

g
y

∂ q̃
∂y

− G(1/g)Ġ(g, ġ)q̃(x, y, t), Φk,n

〉
g

. (3.30)
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With the values substituted for mode Φ1,1 and Φ1,2, eventually, we obtain the evolution
equations for coefficient vector a = (a1,1 a1,2)

T :

Aȧ =

(
B +

1

Re
D +

ġ

g
E

)
a, (3.31)

where matrices A, B, D, and E are defined by

A =

[
g2n11g + n11 g2n12g + n12

g2n21g + n21 g2n22g + n22

]
, B =

[
g2c11g + c11 g2c12g + c12

g2c21g + c21 g2c22g + c22

]
, (3.32a, b)

D =

⎡
⎢⎢⎢⎢⎣

−(2π/L)2(g2n11g + n11) + (g2d11g + d11)g
2

−(2π/L)2(g2n12g + n12) + (g2d12g + d12)g
2

−(2π/L)2(g2n21g + n21) + (g2d21g + d21)g
2

−(2π/L)2(g2n22g + n22) + (g2d22g + d22)g
2

⎤
⎥⎥⎥⎥⎦, (3.32c)

E =

[
g2e11g + e11 g2e12g + e12

g2e21g + e21 g2e22g + e22

]
. (3.32d)

Note that the quadratic term due to Cg does not appear, because only wavenumbers
±1 are retained. All coefficients above are constants (depending only on the basis
functions), and defined in Appendix A.

3.3. Equations of motion for the thickness

In the scaled space, the flow equations alone are not enough to specify the evolution
q̃(t), however, as we also need to specify the scaling g(t).

Following (3.5), the condition that ũ be scaled so that it most closely matches u0

may be written

d

ds

∣∣∣∣
s=0

‖ũ(x, y, t) − u0(h(s)y)‖2 = 0,

where h(s) is any curve in �+ with h(0) = 1, and ‖ · ‖2 is the same norm as before on
the space of functions of (x, y): that is, h = 1 is a local minimum of the error norm
above. This expression becomes

−2

〈
d

ds

∣∣∣∣
s=0

u0(h(s)y), ũ(x, y, t) − u0(y)

〉
= 0,

which becomes 〈
y

∂u0

∂y
, ũ − u0

〉
= 0. (3.33)

Geometrically, this result means that the set of all such functions ũ that are scaled
so that they most closely match the template u0 is an affine space through u0 and
orthogonal to y∂yu0. Since only scalar values are involved, the different definitions
for vector inner products before have no impact here. For clarity, however, the scalar
inner product is defined in the same domain by

〈a, b〉 =

∫
Ω

(ab) dx dy. (3.34)
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Differentiating the constraint (3.33), we have〈
y

∂u0

∂y
,
∂ũ

∂t

〉
= 0. (3.35)

If (3.19) is written separately in ũ and ṽ as

∂ũ

∂t
= f 1

g (ũ) − ġ

g
y

∂ũ

∂y
, (3.36a)

∂ṽ

∂t
= f 2

g (ṽ) − ġ

g
y

∂ṽ

∂y
+

ġ

g
ṽ, (3.36b)

we have 〈
y

∂u0

∂y
, f 1

g (ũ) − ġ

g
y

∂ũ

∂y

〉
= 0, (3.37)

which becomes

ġ

g
=

〈
f 1

g (ũ), y∂yu0

〉
〈y∂yũ, y∂yu0〉 . (3.38)

With f 1
g defined from (3.22) and the finite expansion (two modes only) of (3.9)

being substituted, ultimately, the system is closed by the evolution equation of scaling
variable g:

ġ =
c01

n0

a1,1a
∗
1,1g +

c02

n0

a1,2a
∗
1,2g +

c03

n0

a1,1a
∗
1,2g +

c04

n0

a1,2a
∗
1,1g +

1

Re

d0

n0

g3, (3.39)

where the constant coefficients are defined in Appendix A.
If we choose two more modes n= 1 and 2 for wavenumber k = 2, the same derivation

can give the equations of g, a1,1, a1,2, a2,1 and a2,2 to describe more complex physics.
The resulting equations are lengthy, however, and are given in Appendix B.

4. Results and discussions
In order to validate our numerical scheme as well as our scaling procedure, we

first compare our simulations against the exact self-similar solution (2.2). Then, two
more complex cases are studied, starting with small initial perturbations, chosen to
be eigenfunctions corresponding to the most unstable modes for wavenumbers k = 1
and 2, respectively. The case started with the most unstable k = 1 mode is dominated
by a single k = 1 wavenumber, as we expect. The case with the k = 2 mode as the
initial perturbation is dominated by the k = 2 mode initially, and then pairing occurs,
once the k =1 mode becomes more unstable as the shear layer spreads. In this case,
both k = 1 and k = 2 modes are required in order to model this behaviour.

4.1. One-dimensional laminar diffusion solution

If the flow starts with the velocity profile in (2.4) and no perturbation is added
throughout the process, the dynamics should follow the self-similar solution

u(y, t) = u0(η(y, t)), v = 0, (4.1)

with η(y, t) given by (2.3) with t0 = − Re/4. We will show that the method of § 3
retrieves this solution analytically.
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Figure 3. Thickness δg for self-similar solution: ——, DNS data; �, model (4.4).

The coefficients ak,n in (3.31) are initially zero, therefore remain zero for all time,
and (3.39) simplifies to

ġ =
1

Re

d0

n0

g3. (4.2)

Substituting u0 from (2.4) into the equations for n0 and d0 in Appendix A, we have

n0 =
1

π

∫
y2 exp(−2y2) dy, (4.3a)

d0 = − 2

π

∫
y2 exp(−2y2) dy, (4.3b)

and (4.2) therefore reduces to

ġ = − 2

Re
g3. (4.4)

Solving (4.4) with initial condition g(0) = 1 gives

g(t) =

(
Re

4t + Re

)1/2

. (4.5)

With t0 = − Re/4 in (2.3), we have η(t) = yg(t), and thus the solution

u(x, y, t) = u0(g(t)y), v = 0, (4.6)

given by (3.4b) and (3.9), matches the analytical solution in (4.1).
Figure 3 shows a comparison of the thickness δg , defined in (3.7), comparing

the exact solution g(t) from (4.5) to the value computed from the direct numerical
simulation. The two are visually identical, affirming that the weakly compressible
simulation accurately models the incompressible flow.

4.2. Shear-layer vortex transient

Next, we consider the flow with an initial perturbation containing only the k =1
wavenumber. Here, the most unstable eigenfunction for k = 1 (figure 4) was introduced
with a very small amplitude, 0.02�U , to initiate the instability. We have confirmed
that both simulation and model results are not sensitive to this initial amplitude. In
figure 4, only the v̂ component is shown (as is typical in shear-layer instability studies
(Schmid & Henningson 2001)), and û can be obtained from the continuity equation.
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(k, n) λ Energy (%)

(1, 1) 130.3 91.0
(1, 2) 6.8 4.8
(2, 1) 4.5 3.1

All k = 0 0.4

Table 1. Energy contained in different modes for the flow with k = 1 initial perturbation.
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Figure 4. v̂ of the most unstable eigenfunction for k = 1. The thin solid line represents the real
value, the thin dashed line represents the imaginary value, and the thick solid line represents
the absolute value.
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Figure 5. Vorticity thickness δω for the flow with k = 1 initial perturbation: three developing
stages are marked, corresponding to 1, growth of the instability; 2, nonlinear saturation; and
3, pure viscous dissipation.

The time evolution of the shear-layer thickness is shown in figure 5. From this
figure, we can identify three developing stages: 1, vortices with wavenumber k = 1 roll
up and cause rapid growth of the shear-layer thickness; 2, the flow becomes stable as
the shear layer thickens, vortices start to decrease in strength, and viscous dissipation
starts to play the main role in the shear-layer thickness spreading; 3, all perturbations
have decayed, and the profile simply spreads by viscous dissipation.

For this case, table 1 shows that the first POD mode (n= 1) of k = 1 contains most
of the energy (91.0 %), the second POD mode (n= 2) of k = 1 and the first POD
mode (n= 1) of k =2 contain a small amount of energy, and the remaining modes
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Figure 6. v̂ for POD mode (a) (k, n) = (1, 1) and (b) (k, n) = (1, 2). The thin solid line represents
the real value, the thin dashed line represents the imaginary value, and the thick solid line
represents the absolute value.

contain very little energy. Note that all k = 0 modes together comprise only 0.4 %
of the total energy, which indicates that the scaling has efficiently separated out the
spreading of the mean flow.

Below, we will refer to the mode with, e.g. k =1 and n= 2 as the (1, 2) mode.
Notice from table 1 that the (1, 2) and (2, 1) modes contain a small amount of energy
at about the same level. However, in forming reduced-order models, we notice that
mode (1, 2) seems to be more dynamically important in the sense of capturing the
system evolution features with low-order models. Later, we will show that keeping
only (1, 1) and (1, 2) modes can produce reasonably accurate models, whereas the
same size model with (1, 1) and (2, 1) modes does not perform as well. These most
dynamically important modes, (1, 1) and (1, 2) are shown in figure 6 (again, only v̂

is shown). Note that modes n= 1 and n= 2 have different symmetries (as evident
from their real parts), and their absolute values have different shapes near y = 0. By
comparing the modes to eigenfunctions of the most unstable mode for k = 1 (figure 4),
we may argue that the dip at the centre created by mode n= 2 helps to form a shape
similar to the unstable eigenfunction and therefore couples to the natural instability
(vortex roll-up). This hypothesis can also explain why retaining the n= 2 mode in
our Galerkin projection is important, even though it contains only a small fraction
of the energy. Similar behaviour will be seen in § 4.3 for the case with two dominant
frequencies.

The time coefficients a1,1(t) and a1,2(t) of modes (1, 1) and (1, 2), respectively, are
shown in figure 7(a) (for all time coefficients a, only the real part is shown). On
comparing to the time evolution of the thickness δg , we can clearly identify the three
developing stages described before, corresponding to growth, saturation, and purely
viscous dissipation once the perturbations have decayed. Simulations of the two-mode
model, retaining only (k, n) = (1, 1) and (1, 2) modes, are shown in figure 7(b), for the
same initial condition as in figure 7(a). The model successfully captures the dynamic
features in all three developing stages. The model solution grows more in stage 1, and
is more violent but stabilized at about the same time in stage 2. The same viscous
diffusion appears in stage 3 as we can expect from the comparison to the previous
one-dimensional diffusion solution.

Figure 7(a) also illustrates a relation between the phase difference between the
coefficients a1,1 and a1,2, and the thickness growth: as the perturbation grows, the
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Figure 7. Comparison of dynamic behaviour of the flow with k =1 initial perturbation: (a)
the projection of the full simulation; (b) the solution of the two-mode model. —–, time
coefficients a1,1(t); −−−, time coefficients a1,2(t); − · −·, shear-layer thickness δg .
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Figure 8. Relation between the shear-layer thickness variation and the sudden change of
phase difference of the first two POD modes for the flow with k =1 initial perturbation: (a)
from the projection of full simulation; (b) from the solution of the two-mode model. —–,
phase difference between a1,1 and a1,2; − · −·, shear-layer thickness δg .

coefficients are approximately 180◦ out of phase, and after saturation, the coefficients
are approximately in phase. Figure 8 reveals that the change in thickness (increasing
or decreasing) is related to the phase difference between the two modes. Though the
physical mechanism for this is not clear, it is clear that a phase change of about 180◦

occurs when thickness stops growing rapidly (i.e. when saturation occurs). A similar
change in phase happens also at the second peak in thickness. This phenomenon has
been successfully captured by the two-mode model as well. Note that the discussion
about the phase difference is meaningful only when the amplitudes of the relevant
modes are big enough. For this reason, to avoid any confusion, the plot is intentionally
masked where the amplitude is too low.

This dependence on phase relationship between the two POD modes is reminiscent
of the study of Monkewitz (1988), which looked at the phase relationship between
the fundamental and subharmonic, and its effect on pairing. In our case, however, the
phase relationship is between two POD modes of the same spatial frequency. Note
that energy production rates in Galerkin models were studied by Noack et al. (2005),
and similar techniques could be used to predict the envelope of growth and decay
shown in figure 7.
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Figure 9. v̂ of the most unstable eigenfunction for k = 2. The thin solid line represents the real
value, the thin dashed line represents the imaginary value, and the thick solid line represents
the absolute value.
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Figure 10. Vorticity thickness δω for the flow with k = 2 initial perturbation: five developing
stages are marked (see text for a description).

4.3. Vortex pairing transient

In this case, to study the vortex paring, which needs both k = 1 and k = 2 to describe
it, we seeded initially the most unstable eigenfunction for k = 2 (figure 9) with small
amplitude (0.02�U ) and allowed the unstable k = 1 to be generated naturally by
numerical noise. As the shear thickness grows in time, the k = 1 mode eventually
becomes more unstable than the k =2 mode and grows rapidly to dominate the flow
and trigger vortex pairing.

Figure 10 shows the evolution of the shear-layer thickness to illustrate this complex
dynamics. Five stages in the development can be identified (see figure 1 for visual
identification by vortex structures) as: 1, k = 2 vortices roll up; 2, k = 2 modes become
stable at this thickness; 3, k =1 modes are introduced (primarily owing to numerical
noise), are more unstable, and cause vortex pairing; 4, k = 1 modes become stable;
5, perturbations have decayed, and viscous dissipation dominates.

With the same rescaling and empirical mode decomposition, table 2 shows the
energy of the modes from this more complex dataset. This time, the first POD modes
of k = 1 and k = 2 share the largest portion of the energy, and the energy contained
in all other modes is small.
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(k, n) λ energy (%)

(2, 1) 37.9 55.2
(1, 1) 27.5 40.1
(2, 2) 1.6 2.3
(1, 2) 0.9 1.3

All k = 0 0.6

Table 2. Energy contained in different modes for the flow with k = 2 initial perturbation.
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Figure 11. v̂ for POD mode (a) (k, n) = (1, 1), (b) (k, n) = (1, 2), (c) (k, n) = (2, 1), and (d)
(k, n) = (2, 2). The thin solid line represents the real value, the thin dashed line represents the
imaginary value, and the thick solid line represents the absolute value.

Figure 11 shows the v̂ components of the four most energetic modes, which together
capture 98.9 % of the total energy.

The difference between n= 1 and n= 2 modes is similar for both k = 1 and k = 2. We
can compare their shapes to the most unstable eigenfunction for both wavenumbers
(figure 4 and 9), and then make the same argument as in § 4.2 to explain the importance
of including n= 2 modes despite their small energy. In fact, using a two-mode model
with only (2, 1) and (2, 2) modes, we can still capture vortex roll-up as in the single
frequency case studied before, though mode (2, 2) is small in energy. (The two-mode
model for the two-frequency case is not shown separately, as it is very close to the
single-frequency case and we concentrate on the four-mode model in this section.) On
the other hand, a two-mode model with the most energetic (2, 1) and (1, 1) modes is
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Figure 12. Comparison of the dynamic behaviour of the flow with k =2 initial perturbation:
(a) the projection of full simulation; (b) the solution of 4-mode model. ——, time coefficients
a1,1(t) and a2,1(t); −−−, time coefficients a1,2(t) and a2,2(t); − · −·, the shear-layer thickness δg .
(a) and (b) have same scales for ak,n(t).

unstable, and cannot capture the dynamics successfully. This numerical experiment
illustrates the need to retain the second POD modes with different shape.

It is not surprising that all four modes are required in order to describe both vortex
roll-up and pairing processes in the two-frequency case. Figure 12(a) shows the time
coefficients of modes (k, n) = (1, 1), (1, 2), (2, 1) and (2, 2), computed by projecting
the data from the full simulation. The figure clearly illustrates the evolution of
the coefficients corresponding to the five distinct stages of shear-layer development
described above: first the k = 2 vortices grow, then saturate and gradually damp; then
the energy is transferred to the k = 1 mode (pairing and merging), until this too is
damped and only viscous diffusion remains.

Clearly, a two-mode model will not be enough to completely describe this more
complex system with two characteristic wavenumbers. The dynamical model with all
four modes (k, n) = (1, 1), (1, 2), (2, 1) and (2, 2) is constructed and gives results very
close to the projection results as shown in figure 12(b). This four-mode model captures
the dynamics already captured by the two-mode model with some improvement, and
in addition also describes the vortex pairing process successfully.

As in the previous section, here for each wavenumber, we can also observe that
the phase difference between the first two POD modes changes suddenly by about
180◦ when saturation begins (see figure 13). This behaviour has been successfully
captured by the four-mode model as well. As in the single-wavenumber case, we
masked portions of the plot where the amplitudes were small. Further investigation is
required in order to understand better the physical mechanism behind this interesting
phenomenon.

5. Conclusion
Using scaled POD and Galerkin projection, we can build a model based on a few

basis functions to describe a temporally developing shear layer with its thickness
growing in time. The basis functions are scaled (dynamically) in the y-direction so
that in the scaled coordinates, the shear-layer thickness remains constant in time.
The y-direction velocity v is scaled accordingly to satisfy the continuity equation,
and an appropriate change is made to the definition of the inner product as well. In
our study, we noticed the dynamic importance of the second POD mode (for both
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Figure 13. The relation between the shear-layer thickness variation and the sudden change
of the phase difference of the first two POD modes for the flow with k = 2 initial perturbation:
(a) from the projection of full simulation; (b) from the solution of the four-mode model. —–,
phase difference between a1,1 and a1,2; −−−, phase difference between a2,1 and a2,2; − · −·,
shear-layer thickness δg .

wavenumbers k = 1 and 2), though it captures much less energy than the first POD
mode. We observe that the phase difference between the first and second POD mode
plays a significant role in the shear layer spreading, and the growth in amplitude of
the main energy-containing mode.

A two-mode model is constructed by projection of the incompressible Navier–
Stokes equations onto the first and second POD modes with wavenumber k = 1. This
model is simple and can describe the vortex roll-up, nonlinear saturation, and viscous
damping. A more complex four-mode model can also be obtained by projection onto
the first and second POD modes of wavenumbers k =1 and 2. Applying this model
to a shear flow, we see a more accurate description than the two-mode model, as
we expect. More importantly, we see that the four-mode model successfully captures
the vortex pairing/merging behaviour, as eventually the k = 1 mode becomes more
unstable. In the future, we hope to use models such as these to the study the effects
of external forcing (particularly high-frequency forcing), and ultimately to develop
models suitable for feedback control, for instance to enhance or suppress spreading
of the shear layer and growth of disturbances.
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Appendix A. Equations and the coefficients in the two-mode model
The differential equations for scaling variable g and coefficient vector a = (a1,1 a1,2)

T

for the two-mode model of temporal shear-layer flow are given as

ġ =
c01

n0

a1,1a
∗
1,1g +

c02

n0

a1,2a
∗
1,2g +

c03

n0

a1,1a
∗
1,2g +

c04

n0

a1,2a
∗
1,1g +

1

Re

d0

n0

g3, (A 1)

and

Aȧ =

(
B +

1

Re
D +

ġ

g
E

)
a, (A 2)
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where matrices A, B, D, and E are defined by

A =

[
g2n11g + n11 g2n12g + n12

g2n21g + n21 g2n22g + n22

]
, B =

[
g2c11g + c11 g2c12g + c12

g2c21g + c21 g2c22g + c22

]
, (A 3a, b)

D =

⎡
⎢⎢⎢⎢⎣

−(2π/L)2(g2n11g + n11) + (g2d11g + d11)g
2

−(2π/L)2(g2n12g + n12) + (g2d12g + d12)g
2

−(2π/L)2(g2n21g + n21) + (g2d21g + d21)g
2

−(2π/L)2(g2n22g + n22) + (g2d22g + d22)g
2

⎤
⎥⎥⎥⎥⎦, (A 3c)

E =

[
g2e11g + e11 g2e12g + e12

g2e21g + e21 g2e22g + e22

]
, (A 3d)

with all coefficients defined below:

n0 =

∫ (
y

du0

dy

)2

dy, n11g =

∫
û1,1û

∗
1,1 dy, n11 =

∫
v̂1,1v̂

∗
1,1 dy,

n12g =

∫
û1,2û

∗
1,1 dy, n12 =

∫
v̂1,2v̂

∗
1,1 dy,

n21g =

∫
û1,1û

∗
1,2 dy, n21 =

∫
v̂1,1v̂

∗
1,2 dy,

n22g =

∫
û1,2û

∗
1,2 dy, n22 =

∫
v̂1,2v̂

∗
1,2 dy,

c01 = −
∫ (

v̂1,1

dû∗
1,1

dy
+v̂∗

1,1

dû1,1

dy

)
y

du0

dy
dy, c02 = −

∫ (
v̂1,2

dû∗
1,2

dy
+v̂∗

1,2

dû1,2

dy

)
y

du0

dy
dy,

c03 = −
∫ (

v̂1,1

dû∗
1,2

dy
+v̂∗

1,2

dû1,1

dy

)
y

du0

dy
dy, c04 = −

∫ (
v̂1,2

dû∗
1,1

dy
+v̂∗

1,1

dû1,2

dy

)
y

du0

dy
dy,

c11g = −
∫ (

2π

L
iu0û1,1 + v̂1,1

du0

dy

)
û∗

1,1 dy, c11 = −
∫

2π

L
iu0v̂1,1v̂

∗
1,1 dy,
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2π
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dy

)
û∗
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2π
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d21g =

∫
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û∗

1,2 dy, d22 =

∫
d2v̂1,2

dy2
v̂∗

1,2 dy,

e11g = −
∫

y
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Appendix B. Equations in the four-mode model
The differential equations for scaling variable g and coefficient vector

a = (a1,1 a1,2 a2,1 a2,2)
T

for the four-mode model are given as

ġ =
c01

n0

a1,1a
∗
1,1g +

c02

n0

a1,2a
∗
1,2g +

c03

n0

a1,1a
∗
1,2g +

c04

n0

a1,2a
∗
1,1g

+
c05

n0

a2,1a
∗
2,1g +

c06

n0

a2,2a
∗
2,2g +

c07

n0

a2,1a
∗
2,2g +

c08

n0

a2,2a
∗
2,1g +

1

Re

d0

n0

g3, (B 1)

and

Aȧ =

(
B +

1

Re
D +

ġ

g
E

)
a + N, (B 2)

where matrix N includes all terms nonlinear to ak,n as

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(g2c13g + c13)a
∗
1,1a2,1 + (g2c14g + c14)a

∗
1,1a2,2 + (g2c15g + c15)a

∗
1,2a2,1

+ (g2c16g + c16)a
∗
1,2a2,2

(g2c23g + c23)a
∗
1,1a2,1 + (g2c24g + c24)a

∗
1,1a2,2 + (g2c25g + c25)a

∗
1,2a2,1

+ (g2c26g + c26)a
∗
1,2a2,2

(g2c33g + c33)a1,1a1,1 + (g2c34g + c34)a1,2a1,2 + (g2c35g + c35)a1,1a1,2

(g2c43g + c43)a1,1a1,1 + (g2c44g + c44)a1,2a1,2 + (g2c45g + c45)a1,1a1,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B 3)

and other matrices for terms linear to ak,n have blocks of zeros as shown below:

A =

[
A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
, D =

[
D1 0
0 D2

]
, E =

[
E1 0
0 E2

]
, (B 4)



Low-dimensional models of a temporally evolving free shear layer 133

with sub-matrices defined by

A1 =

[
g2n11g + n11 g2n12g + n12

g2n21g + n21 g2n22g + n22

]
, A2 =

[
g2n31g + n31 g2n32g + n32

g2n41g + n41 g2n42g + n42

]
,

B1 =

[
g2c11g + c11 g2c12g + c12

g2c21g + c21 g2c22g + c22

]
, B2 =

[
g2c31g + c31 g2c32g + c32

g2c41g + c41 g2c42g + c42

]
,

D1 =

⎡
⎢⎢⎢⎢⎣

−(2π/L)2(g2n11g + n11) + (g2d11g + d11)g
2

−(2π/L)2(g2n12g + n12) + (g2d12g + d12)g
2

−(2π/L)2(g2n21g + n21) + (g2d21g + d21)g
2

−(2π/L)2(g2n22g + n22) + (g2d22g + d22)g
2

⎤
⎥⎥⎥⎥⎦,

D2 =

⎡
⎢⎢⎢⎢⎣

−(2π/L)2(g2n31g + n31) + (g2d31g + d31)g
2

−(2π/L)2(g2n32g + n32) + (g2d32g + d32)g
2

−(2π/L)2(g2n41g + n41) + (g2d41g + d41)g
2

−(2π/L)2(g2n42g + n42) + (g2d42g + d42)g
2

⎤
⎥⎥⎥⎥⎦,

E1 =

[
g2e11g + e11 g2e12g + e12

g2e21g + e21 g2e22g + e22

]
, E2 =

[
g2e31g + e31 g2e32g + e32

g2e41g + e41 g2e42g + e42

]
.

The equations for coefficients are too many to be listed here.
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